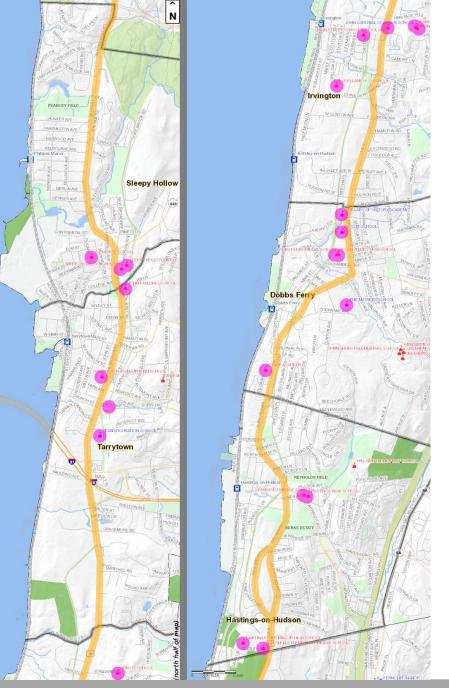


Route 9 Active Transportation Conceptual Design Plan

FREE

GOALS

- Improve safety
- Attract people using Mario M Cuomo Bridge to shops and restaurants
- Invite people to walk along & across Route 9
- Connect the villages with family friendly cycling infrastructure
- Enhance transit use



CONCERNS

• 23 schools adjacent to Route 9

(indicated by dots on map, right)

- 150 crashes per year *
- Recent fatality of person walking in Dobbs Ferry
- Road perceived as barrier bisecting communities

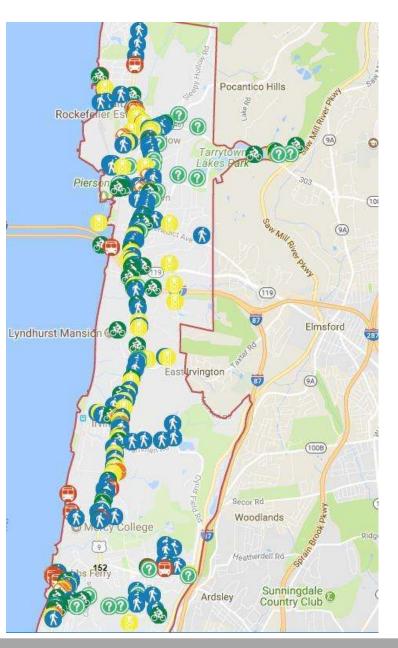
* NYS Accident Location Information System

OPPORTUNITIES

- New bridge is bringing **more people** walking and cycling to Route 9
- Most trips are **short trips** (school, sports, friends, food, library, etc)
- Safe routes **reduce congestion** by converting short trips to walking and cycling
- **Sufficient width and capacity** to create space for active transportation modes
- Connectivity with Old Croton Aqueduct
 Trail & Mario M Cuomo Bridge
- Enhance economy & quality of life

CHALLENGES

- Route 9 is dominated by vehicular traffic
- Walking, biking, and taking transit feel **unsafe**
- On-street parking is highly valued
- Some **pinch points** due to on-street parking, higher traffic volumes, walls
- **Unsuitable parallel routes** in most locations (don't exist, hills, unpaved, unlit)


PUBLIC ENGAGEMENT

June 2017 Workshops:

- 140 attendees

Online tools:

- Trade-offs questions
 - 496 responses
- WikiMap
 - 813 responses

PUBLIC ENGAGEMENT

October 2017 Workshops:

- 100 attendees

Online Survey:

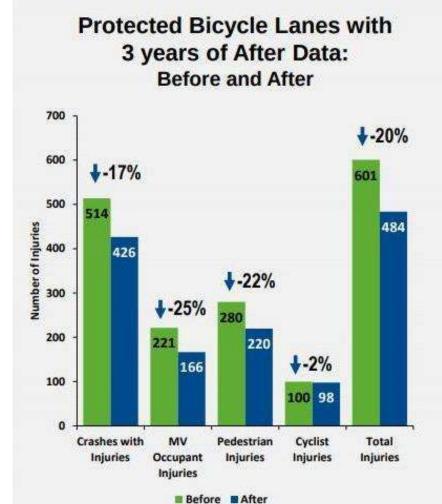
- Level of biking and walking on Route 9
- Street design options
 - Over 1,000 responses

November 2018 Open House

 Presented Final Report to the public and officials

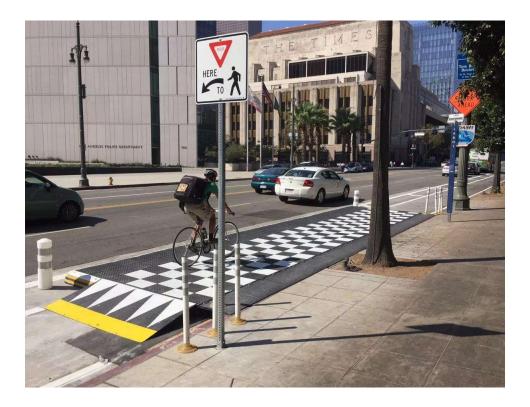
DESIGN ELEMENTS

- Sidewalks
- Crosswalks
- Roundabout
- HAWK signals
- Curb extensions
- Pedestrian islands
- Protected bike lanes
- Bus platforms & shelters
- Signal timing adjustments

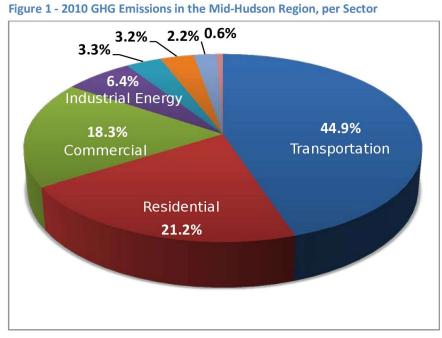

TRAFFIC IMPACT

- Intersections operating below NYS threshold will continue to
- Delay at other intersections will meet LOS thresholds
- Detailed analysis will be conducted during permitting process
- Future analysis should account for mode shift created by new options

SAFETY IMPACT


- Similar projects have reduced injuries (for one example, see graph, right)
- Modal separation
- Shorter crossing distances
- Enhanced visibility
- Dedicated turn lanes
- Reduced speeding
- Careful turning geometry
- Detailed review will be conducted during the permitting process

Protected bicycle lane projects with 3 years of after data include the following: 9th Ave (16th, 31th), 8th Ave (Bank-23th, 23th, 23th), Broadway (59th-47th, 33th, 23th, 23th, 1th Avenue (Houston to 34th), 2th Ave (Houston-34th), Columbus Ave (96th-77th) Note: Only sections of projects that included protected bicycle lanes were analyzed Source: NYPD AIS/TAMS Crash Database


TRANSIT IMPACT

- Replace pole only stops with shelters and benches
- Connect all bus stops to walking network with new sidewalk and crosswalks
- In lane stops overlapping with bike network supported with boarding platform
- Improve bus stop locations and spacing

ENVIRONMENTAL IMPACT

- Transport is region's top carbon emission
- Most trips are short trips
- Safe streets invite more walking and cycling instead of forcing people to drive

Trip Distance Distribution

Cumulative	Distance
19%	< 1 mile
34%	< 2 miles
46%	< 3 miles
54%	< 4 miles
61%	< 5 miles
66%	< 6 miles
78%	< 10 miles
86%	< 15 miles
100%	>= 15 miles
	19% 34% 46% 54% 61% 66% 78% 86%

Data: 2017 National Household Travel Survey, USDOT Tabulation of all person trips in trippub.csv by:

BIKETARRYTOWN

ECONOMIC IMPACT

- Numerous studies show cycling and walking enhancements increase retail sales. People walking and cycling:
 - Shop locally
 - Spend more money per month locally
 - Fit more people in a given space
 - Free up parking spaces
 - Make places calmer and vibrant, attracting more people to spend time and money there

EQUITY IMPACT

- Low income residents tend to rely on walking, cycling and transit
- Half of households in study's villages have access to one or no vehicles *
- Car ownership strains family budgets, costing \$9,300 / year **

* Census Bureau, American Community Survey, 2017 ** AAA, "Your Driving Costs," 2019

PRELIMINARY COST ESTIMATES

- Total construction estimate \$6M to \$36M, depending on options chosen
- Expectation of joint grant application and funding for engineering design and construction

Village	Low cost estimate	High cost estimate
Sleepy Hollow	\$0.9 M	\$5.0 M
Tarrytown	\$1.5 M	\$9.2 M
Irvington	\$1.3 M	\$6.8 M
Dobbs Ferry	\$1.3 M	\$5.8 M
Hastings-on-Hudson	\$1.6 M	\$9.4 M
Total	\$6.6 M	\$36.2 M